Observation de la réaction pré-crash de piétons en situations d’accidents reproduites sur simulateur

Anurag Soni, Thomas Robert, Frederic Rongieras, Philippe Beillas
TS2 - LBMC

Et l’aide précieuse de F. Vienne et D. NDIAYE, COSYS - LESPIS

Séminaire GERI PRELUDE, 27 Novembre 2014
INTRODUCTION

Current Safety Procedures

• Do not account for pedestrian pre-crash reactions

• Surrogates are configured in typical walking posture

• Seems to represent a walking pedestrian unaware of the imminent accident

V/S Real Life Situations

• Live Human ➔ React

• Perception of imminent accident may lead to sudden crash avoidance reactions

➔ Affect the pedestrian pre-impact conditions

Affect the Post Crash Outcomes !!!
Objectives

- To observe and quantify pedestrian pre-crash reactions
- To assess the consequences of these reactions
 - Passive safety: influence on the injury risk
 - Active safety: pedestrian detection? Possible avoidance?
Experiments – Test set-up

- **Pedestrian walking space**

 ![Snapshot of the Pedestrian Walking Space](image)

 ![Top-down schematic view of Walking Space](image)

 - Screens: 6m x 2m
 - Track: 5m x 1m
Experiments - Test set-up

- **Subjects**
 - 12 Young (18-30 years old)
 - 11 Elderly (60-75 years old)

- **Task**
 - Cross the street, avoid the vehicles
 - 2 to 4 « virtual crashes » from both sides

- **CPP**
Experiments - Test set-up

- Virtual crashes

TRIGGER
 Target Car Appear

SOUND ON
 T = 0 sec

BALL HIT ON SCREEN
 T = 0.6 sec
 T = 1.1 sec

Audio Pulse
 95 db peak
 1 sec duration

Target Car

Launcher
 Final Position

Spring
 Magnet
Experiments - Test set-up
Experiments - Test set-up
Experiments - Test set-up

- **Measurements**
 - **Kinematics**
 - Vicon system, 6 cameras, 46 markers
 - **Ground Reaction Forces**
 - 2 force plates embedded in the track
 - **Muscle activity**
 - EMG from 9 muscles
Experiments - Test set-up

- Simu
 - display
 - sound
- Vicon – Motion Analysis
 - Acquire
 - Vicon
 - Launcher
- Trigger
 - control
- Experiments - Test set-up
Data Analysis

- **Motion reconstruction**
 - 3D trajectories of markers

- **Kinematic model**
 - Kinematic linkage
 - Dimensions
 - Position of markers on the model

Optimisation
Data Analysis

- **Motion reconstruction**

 Estimation of the mannikin posture for given set of marker’s positions

 - For one frame
 - Over the whole motion
Experiments – Main results

- Analyzed data
 - 70 surprise trials recorded => 51 analysed (26 Young & 25 Elderly)
Experiments – Main results

• Analyzed data
 • 70 surprise trials recorded => 51 analysed (26 Young & 25 Elderly)
• 3 types of reactions

Accelerate Back out Freeze
Experiments – Main results

- Analyzed data
 - 70 surprise trials recorded => 51 analysed (26 Young & 25 Elderly)
- 3 types of reactions

![Bar chart showing types of reactions in young and elderly groups](chart.png)

- Frequency (in %)
 - Type of Reactions: Acc., Freeze, Backout, No Reaction
 - Young: N_Yo = 26
 - Elderly: N_EL = 25
Experiments – Main results

- **Analyzed data**
 - 70 surprise trials recorded => 51 analysed (26 Young & 25 Elderly)

- **3 types of reactions**

![Graphs showing speed vs time for Young and Elderly]

Strategies can be distinguished ~700 ms after the trigger, i.e. 400 ms before impact
Multi-Body Simulations

- Influence of pre-crash posture orientation and speed on crash injuries

Pedestrian Pre-Crash Conditions

40 Cases

Baseline Case

Small Sedan Model
Simplified windscreen
(single stiffness)

Central Impact

40 Kmph

(Stepping Back)

+ θ

+ V (Running)
Multi-Body Simulations

- **Baseline vs. other cases**
 - Standard walking posture covers ~ 90% of the simulated cases

<table>
<thead>
<tr>
<th></th>
<th>HIC</th>
<th>Head Linear Velocity</th>
<th>Head Angular Acc.</th>
<th>Thigh Force</th>
<th>Thigh Moment</th>
<th>Knee Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>1114</td>
<td>10.27</td>
<td>3980</td>
<td>5098</td>
<td>260</td>
<td>10</td>
</tr>
<tr>
<td>90th</td>
<td>90th</td>
<td>90th</td>
<td>84th</td>
<td>88th</td>
<td>94th</td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS

• Limitations
 – Realism of the experiments
 • Simplified simulator
 • Impact scenario ?
 – Simulation
 • Only one specific impact configuration simulated (effect of impact speed, position in front of car, car front profiles should be investigated)
 • Further investigate the bracing effect ?
CONCLUSIONS

• Main results

 – Database of pedestrian pre-crash reactions.

 – Variety of reactions but three main strategies that can be distinguished ~ 400 ms before impact.

 – Standard pedestrian posture seems to be close (90th percentile) to worst case situation.
Réactions de piétons jeunes et âgées en situation de pré-crash lors d’expérimentations sur simulateur

Questions ?