Design and development of mobile service for ecodriving

Guillaume Saint Pierre
Olivier Orfila
Mickael Messias

Séminaire SERRES
Lyon, 22/03/2013
Introduction

- Efficient driving is an highly complex task
 - Control the vehicle,
 - adjust speed and trajectory according to driving environment,
 - deal with hazards,
 - make strategic decisions such as navigation to progress.

- For pedagogical purposes, eco-driving is often summarized in short and simple advices (tips),

- But sometimes leading to a misunderstanding of the fuel efficient driving strategy
Fuel efficient driving = driving slowly?

When drivers are asked to drive more efficiently, they generally interpret this as to drive slower.

- Complying the speed limits does not necessary save fuel (ISA studies)
- Reducing speed is not the only nor is it the optimal strategy for eco-driving
- In fact, there are several factors other than speed which can influence both fuel consumption and emissions
Hypermiling

- Eco-driving should be distinguished from hypermiling.
- They differ in terms of tactics.
- Hypermiling trades off safety for fuel economy, while with eco-driving there is no tradeoff.
- Barkenbus (2010)

"Eco-driving does not mean driving slowly, but means driving better".
O. Ducreux ADEME (Le Monde 2010).
ecoDriving definition

- Ecodriving is, at every moment, a multicriteria optimisation (energy consumption, safety, travel time, comfort,...) of each driving task
 - O. Orfila, Young Researchers Seminar (2011)
How to improve driver’s efficiency?

• Actual systems are not sufficient:
 – Most systems devoted to safety
 – Instant fuel gauge does not help a lot:
 • Very fast variations for instant values, often more related to infrastructure than driving style
 • Tendency of drivers to stop accelerating when fuel rate increase, leading to choose a less efficient gear
 • Very small variations when looking at average values
 • Not a good pedagogical tool to learn (no history, no indicators)

• Goal: Build a system that help the driver learning and maintain an efficient driving style
• ecoDriver targets a 20% reduction of CO2 emissions and fuel consumption in road transport by supporting the adoption of a green driving behaviour through a dedicated multimodal human machine interface (HMI).

• Drivers will receive eco-driving recommendations through a HMI (i.e., a combination of visual, acoustic and haptic messages).

• Message content and types will be adapted to the driving style and to vehicle characteristics in order to maximize fuel use efficiency and improve traffic flows – but without compromising safety.
Consortium partners

[Logos of various partners including ITS University of Leeds, ERTICO ITS Europe, BMW Group Research and Technology, TNO Innovation for Life, VTI Finding a Better Way, CTAG, TomTom, IKA RWTH Aachen University, IFSTTAR, CRF Centro Ricerche Fiat, NAVTEQ, Daimler]
ecoDriver aims to...

1. **Achieve a 20% reduction of CO₂** emissions and fuel consumption in road transport by delivering effective green driving advice and feedback.

2. **Maximise system effectiveness and acceptance** by adapting the eco-driving human-machine interfaces to the driving style, traffic conditions, powertrain and vehicle type.

3. **Test and compare the effectiveness of nomadic and built-in navigation systems** in encouraging green driving.

4. **Maintain or even enhance driver safety** while providing eco-driving support.

5. **Scale-up the results** obtained from test trials to Europe, and carry out a social cost-benefit analysis to assess the economical feasibility of a potential market deployment of the ecoDriver system.

6. **Explore how eco-driving related CO₂ reductions might be affected by different future technological, political, and lifestyle scenarios.**

"Design and development of mobile service for ecodriving", G. Saint Pierre
Providing the right feedback at the right moment

Give complex information in a simple way

- Which information to be provided?
- When?
- How?

- Preview (e-horizon)
- Current (instant info)
- Post-drive feedback and learning
Different implementations of the system

• **Built-in: Full ecoDriver system**
 – System connected to a data acquisition unit (DAS) and an on-board computer
 – Detailed info -> precise algorithms

• **Nomadic devices:**
 – GPS (TomTom)
 – Stand alone smartphone
 • Implies that information only comes from phone sensors
 – Smartphone + OBD II connection
 • Additional CAN information available (engine rpm, brakes, light sensor, fuel consumption etc.)
Actual ecoDriver situation

• 4 years project that started 1 year ago
• Challenge: Build the algorithms, the HMI, and the system in parallel
• Use a common HMI for all the different system implementations (slight adaptions)
• Decisions on HMI to be taken in 2013 after HMI comparisons are done using various experiments (simulation and real trials)
Built-in systems

- Various options are envisioned by the OEM partners
- Dashboards will be modified

HuD: eCoMove blue horizon

HuD: eCoMove white horizon

HuD: eCoMove red horizon
Nomadic devices

- **GPS like nomadic device, with the ecoDriving function (Tom Tom)**
 - Makes use of the map data, CAN data, and the navigation system

- **Smartphone connected to CAN bus with the ecoDriver application**
 - Makes use of the CAN data, and phone sensors
 - No navigation service provided by the app.

- **Stand-alone Smartphone with the ecoDriver application**
 - Makes use of the phone sensors ONLY
Many applications already exist
- Not documented scientifically
- Different HMI, different purposes
- Mainly visual display until now

A user point of view:
- Main usage: navigation
- Additional usage: efficiency, speed camera detection, traffic information, ...
- Few applications are providing different services at the same time
- Which one will you use?
State of the art (HMI)

– Simply asking drivers to drive more fuel efficiently is an effective mechanism (van der Voort et al., 2001)
– But long term effect unsuccessful (Birrell, Young and Weldon, 2010)

• Fuel efficiency related HMI
 – Instant information perceived better than aggregated information (Rakausas et al. 2010)
 – Little evidence of long term positive effects for instant information about fuel economy (think about fuel gauge)
 – Haptic pedals work quite well, but not accepted (Adell et al., 2008; Young et al., 2011)
 – Auditory feedback often annoying
Building a smartphone app... (1)

- Flow charts not so obvious
- Some questions related to safety and mental workload
Building a smartphone app ... (2)

• ecoDriver uses Android smartphones
• ecoDriver app. should adapt to Android standards:
 – Back button always at the same place
 – Use action bar instead of menu buttons

• Keep it intuitive, and easy to understand
Drivers’ motivation

An important consideration:

- **Drivers differ in their motives for eco driving**
 - Time, fuel consumption, or environmental factors
 - Fricke and Schießl (2011) – ecoMove project

- **High influence of other factors on driving behavior**
 - Surrounding traffic, weather, road type, power of the vehicle
 - Gonder et al., 2011

- **System needs to adapt to drivers’ skills and instant motivation**
Questions still need to be addressed

- Nomadic application only for ecoDriving?
 - Research app: ok, Customers app: not possible

- Include a navigation service?
 - Need map information (Google map interrogation not free)

- How to adapt to driver’s motivation?
 - Driver type detection algorithm, that needs baseline logging

- Is it acceptable to let drivers interact while driving?

- Is it acceptable to use a speedometer?

- How many different information can be provided?
 - May depend on screen size

- Interactions with social networks (facebook, google+) to improve attractiveness and competition between drivers?

- Associated website for detailed history consultation?
State of the work

- Application is almost ready
- Includes:
 - Fuel consumption modeling
 - Various Ecoindex computations
 - Gear Shift Indicator
 - Events detection
 - Personalisation features
- First field tests to decide on HMI in 2 weeks
- Large scale evaluation (NDS) next year

21/03/2013 "Design and development of mobile service for ecodriving", G. Saint Pierre
For more information about ecoDriver

Please contact

ecoDriver project
Prof. Oliver Carsten
University of Leeds (coordinator)
Woodhouse Lane
LS2 9JT Leeds
United Kingdom

O.M.J.Carsten@its.leeds.ac.uk
www.ecodriver-project.eu

Thank you for your attention

At IFSTTAR:
- O. Orfila (fuel consumption modelling)
- L. Nouveliere (speed profile optimization)
- G. St Pierre (Ecoindex)
- M. Messias (Android Programming)

21/03/2013 "Design and development of mobile service for ecodriving", G. Saint Pierre